
UNCLASSIFIED

AD-A262 965

AFIT/EN-TR-93-2

Air Force Institute of Tichnology

Ada/X Window System Bindings: D T IC
Conversion Strategies - • . E

Karl S. Mathias Mark A. Roth • ;" '
Capt, USAF Maj, USAF D18 March 1993 ,.

Approved for public release; distribution unlimited

93-08079

Ada/X Window System Bindings: Conversion Strategies

Karl S. Mathias
Mark A. Roth-

Abstract vanous execution problems, and are not main-
tained 13]. As new versions of the X Window Sys-

The X Window System has come to be accepted tern are released, the STARS bindings become in-
as the standard for developing graphical user creasingly obsolete.
interfaces on mid to high range workstations. This paper discusses strategies for converting
Ada interfaces to X through th• usc of bindings from these old bindings to the newer bindings that
were developed in the late 1980's under the Soft- are being commercially supported, An overview
ware Technology for Adaptable Reliable Systems of the X Window System is given along with a dis-
(STARS) contracts. The bindings have not been cussion of how Ada binds to X. Examples are pre-
maintained, and as they become more obsolete, sented that demonstrate how the strategies for
many are converting their applications to newer conversion have been used to convert Saber (an
sets of commercially available bindings. This pa- air/land battle wargame) from STARS to bindings
per discusses how the bindings work and two developed by Software Engineering Research Cor-
strategies for converting out of the STARS bind- poration (SERC).
ings.

1 Introduction 2 The X Window System: A Brief

The X Window System was developed by the Overview
Massachusetts Institute of Technology (MIT) in
partnership with Digital Equipment Corporation The X Window System uses a client-server ar-
(DEC). Released in 1986, it supplies a flexible, chitecture that is designed to take advantage of
object-oriented, graphic toolkit that can be used to networked systems. A server process runs on
develop user interfaces. Now in the fifth release each display machine in a network (see Figure
of its second major version (X11R5), X has become 1); it functions as the interface to that device's
the de-facto standard interface with workstation hardware. Client applications communicate with
manufacturers [5]. the server to have it display images and react

Ada bindings to X were developed in the late when the user takes specific actions. Clients and
1980's under the Software Technology for Adapt- servers may run on the same or different ma-
able Reliable Systems (STARS) contracts. The chines.
bindings do not cover the full X specification, have An X client application may utilize several lay-

ers of software, as shown in Figure 2. Each layer1e authors hre with the Department of Electrical and an
-oiputer Engineering (AFIT/ENG), Air Force Institute of
Technology, 2950 P ST, Wright-Patterson AFB, OH 45433- higher level having complete access to any of the
7765. lower layers.

2.1 X Library

'The lowest-level functionality of the X Window
System is the X Library (Xlib). This library
provides the very baF.: functions needed to ren-

Node On. Node Two der images on a display. Examples would be

drawing lines, defining display colors, handling
Citent App. Sqrtr keystrokes, etc

2.2 X Toolkit IntrinsicsS~ Net work
Ni wProgramming

in Xlib can be a very labor inr'er-

sive task due to the amount of event handling tha'
takes place. Various toolkits have beon developed

s -App. that alleviate the burden of programming in Xiii.
Server

NodeThree the most popular being the X Toolkit Intrinsics
(Xt). Applications using Xt are given general fa-

Figure 1: Client-Server Architecture of the X Win- cilities that allow streamlined event handling and
dow System the ability to create reusable display objects (Gike

windows or buttons) called widgers.

2.3 Widget Sets

The charter of X is 'mechanism without policy'
[6, 81. Thus, unlike some windowing systems, X
does not force developers to have a mandated style
to their application. Commercial widget sets such
as the Open Software Foundation's (OSF) Motif
widget set fill in this gap. Layered on top of Xt,
this library is used according to a style guide, and

Applation provides a consistent look end feel across applica-

tions written with it [21.

Widgwe Set

3 Ada Bindings to X
X Toolkit Intrinslic

X Library The X Window System is written in C without
consideration for language independence. This is
a problem for programmers using Ada to develop
projects. Language bindings to C libraries offer a

SNet--or • simple solution for programs needing X fuanction-

ality.
Figure 2: Architecture of X Window System Ap-
plications 3.1 Binding to C

In general, a binding to C will consist of four
parts: declarations, preprocessing, C call(s), and
post-processing. Figure 3 illustrates a typical
binding. This binding takes one parameter as

Page 2

1 : function AdaCall(Paramr One: in Speziai return Speclal -s
2 : function CCali(X: in INTEGER return INTEGE.k;
3 : p-ragma TNTERFACE(C, _C.a'lv;

4 : praqma INTERFACE NAME(CCall, C Cal ;

5 : .
6 New Param One : NTEE•,R;

Return Value : !NTEG'R; ..
8 :

9: begin

10: New Param : Speal Te TE
11: Return Value : C al (New Para:.);
1l: return(INTEGER To Spezia!(RerUrn Value)•, I
13: end AdaCall; 4,

Figure 3: An Example Ada-to-C Binding

input, converts it to an integer, and passes that Thick bindings are characterized by heavy us(
integer to the corresponding C procedure. of Ada constructs and language features, gen-

Lines 1-4 declare the Ada binding function and eralization of the mapping to C calls (one-to-
the corresponding C function. The INTERFACE many mappings), and the addition of utility proce-
statements let the compiler and linker know that dures/functions. A thick binding seeks to insulate
a C calling protocol will be needed, and the name the Ada programmer from the C calls while giving
of the function in the C libraries. Line 10 illus- them the freedom to utilize Ada features to their
trates a simple preprocessing segment of code. best advantage.
The parameter Param.One must be converted to These become important considerations when
an integer value before the C call can accept it. moving between binding sets. Moving from a
An externally defined function accomplishes this. thick to a thin binding will involve the creation
Line 11 calls the actual C function and passes it of calls that were not previously required. Mov-
the converted value of ParamOne. Line 12 post- ing from a thin to thick binding may call for a
processes the returned integer into the desired redesign of some code sections to make optimum
type. This is then returned to the calling routine, use of Ada's features.

3.2 Binding Thickness 3.3 STARS Binding Set

Figure 3 is a simple mapping of a C function to Three major sets of X interfaces are distributed

an Ada call. A more complex C call, however, by the STARS Foundation: Science Applications
could require much more massaging in the pre- International Corp (SAIC) Xlib bindings, Boeing's
and post-processing areas to send and return val- Xt Intrinsics/OSF Motif bindings, and the Unisys
ues properly. The level to which a binding pro- Ada/Xt software. The Unisys software is an Ada
cesses information before passing it on has come implementation-the Xlib and Xt Intrinsics li-
to be dkacribed in terms of thickness. braries have been re-coded in Ada.

A thin binding set is characterized by a one-to. The SAIC bindings cover most of the Xlib func-

one mapping of Ada and C functions. Ada specific tions, while the Doeing bindings cover some Xlib,
features are only used when a C-specific construct a large part of Xt, and most of the OSF Motif
.,•,y -,ot be available. Within the bindings, min- functions. While carrying the characteristics, of
imal amounts of processing are applhcd before or thirn Landings, they have some utility functions
after the call to C. and Ada-specific constructs. As they were one of

Page 3

the first sets of bindings available, many applica- 41.1 Method
tions used them as an interface to X.

There are problems with usihg these bindings. Previous work by Moore 141 describes a straight-

There is little documentation available, so the forward method for converting each STARS Iden-

programmer usually must read the source code tifier:

to determine usage. The bindings have bugs, and
users of the bindings must correct them [I]. The 1. Find Base STARS Declaraton. Identify the

binding set is not complete and some bindings STARS source code statements that dec.ared

must be created. The SAIC and Boeing bindings the identifier, This process may need to be

are not entirely compatible, and use of one can nested, as the goal is to locate a standard

mean loss of some functionality in the other 13). Ada type definition.

Finally, there is no on-going support for the bind-
ings and they are rapidly becoming obsolete. 2. Find Similar fdentifier Search the targetbinding specification for an identifier with

the same or similar name as the STARS, iden-

3.4 Commercial Binding Sets tifier.

The lack of support for STARS has resulted in 3. Find Base Target Binding Declaration, Iden-
the emergence of commercially supported bind- tify in the target binding how this identifier
ings. Bindings such as Ada/Motif by SERC are is declared. This process may also need to bp
based upon the STARS bindings, but have been repeated to locate the base Ada type declara-
debugged, expanded and enhanced to make them tion.
a viable product [7].

The availability of these bindings makes it pos- 4. Convert Between Base Declarations. Using
sible for applications to be upgraded to the latest the declarations from above, the base type
releases of the X Window System and OSF Motif. of the STARS identifier is converted to an

appropriate type used by the target binding
identifier.

4 Converting Bindings

With many of the commercial bindings avail- 4.1.2 Example Conversion

able based on the STARS bindings, converting a Saber, an air/land battle wargame. was originally
STARS application to a newer set would seem a coded using the STARS bindings. Figure 4 shows
simple task. Small applications do convert easily, a piece of the code used to set the colors of ter-
Large applications, however, require a careful ap- rain features. In this example, the code will be
proach or excessive work will be done for a product converted to the Ada/Motif binding set using low.
that is less than optimal. This section discusses level mapping.

two strategies for conversion: low-level and high-
level mapping. 1. Find Base STARS Declarations. The

only STARS identifier used in Figure 4 is

4.1 Low-Level Mapping Strategy XT.Pixel (a type identifier). Looking in the
STARS declarations XT.Pixel is defined as

Using the low-level style of conversion, the pro- a subtype of AFSLARGENATURAL. Looking in
grammer determines either all at once, or incre- the boeing-afs package, AFS..LARGENATURAL
"-,entafly all the STARS functions, procedures. is a subtype of AFSLARGETNTEGER. Finally,
-A, d types in an application. Each of these is then it is found that AFSLA.r,EJLiNTE'-;.R is define'd
iteratively converted to a corresponding func- as an Ada INTEGER. This is the base Ada
tion/procedure/type in the target binding set. type that is needed.

Page 4

procedure Initialize Terrm.n Color-s(?ollitc~al Red
Political Blue XT.PixeI;
Political Neutr-al XT,.PIxel';

CrtV x:4.P:xel' -I

begin
PolitIcalRedColor Pcli*._caI_Rked;
Political -Blue -Color Political Blue;
PoliticalNeutral Color Polltical Neutral;

C City_Color City;
end Initialize T'errainColors;

Figure 4: Section of Saber's STARS code

procedure Initialize Terrain Colors(PoliticalRed :X Lib.Pixel;
Political-Blue X Lib.Pixel;
PoliticalNeutral X Lib.Pixel;

City X Lib.Pixel)is

begin
Political_-Red_-Color PoliticalRed;
Political_-Blue_-Color PoliticalBlue;
PoliticalNeutralColor PoliticalNeutral;

City-Color City;
end Initialize TerrainColors;

Figure 5: Low-level conversion of code

Page 5

2. Find Similar Identifier. There is no Pixel Not robust. A line-by-line translation is only
in Ada/Motifs Xt Intrinsics library package, effective if the number of translations are
however there is one in the'X library package. small, hnd they match up well with the tar-

get bindings, For example, this method fails
3. Find Base Target Binding Declaration. Fol- when a STARS target function such as x -_

lowing a procedure similar to that above, X_ Se:W122.' is encountered since there is no
Lib.Pixel will be have a base type of an in- corresponding Xt identifier.
teger range (-2 ** 31 . . (2 31) - 1).

*No optimization. Since the STARS bindings
4. Convert Between Base Declarations. Since wr developd X h e new funcins

bothPixs ae bseduponintgervaleswere developed, X has added new functionsboth Pixe.~s are based upon integer values, that can significantly reduce the amount of

the conversion is simply to substitute the code required. Since low-level mapping does

new identifier for the old. Figure 5 shows not alwfrredeSin, these ne fere

the final product. Note that the package wilt not be used.

variables PoliticalRedColor, Pclitcai_
Blue-Color, etc. will also require this con- Prone to error. Larger applications may have
version in their declarations if the assign- X values that are global in scope (such as de-
ment is to compile properly. fault drawables); indiscriminate conversions

of these values may introduce side-effects. A
The converted code is shown in Figure 5. STARS binding may have a base type that

maps to a similar, but incorrect target bind-
4.1.3 Advantages ing identifier. For example, X..ArcL•.a"s in

STARS appears to map to xt .X:. 5 c .1I.
This type of approach works well with smail ap- Types.ArgList-Ptr in SERC (both are ac-
plications having limited X functionality. It offers cess types). If this mapping is used, the
the following advantages: corresponding SERC functions using an ar-

"gument list will not compile-they require* Little knowledge of X required. Since the xt.Xt.ncilŽaryTyes.xt. s:.

method is somewhat algorithmic, a program-

mer with only a basic knowledge of X can do
the simple comparisons needed. 4.2 High-Level Mapping Strategy

"* No redesign required. In essence, this is a In larger applications, a more effective method of

line-by-line translation and avoids the need conversion will be high-level mapping. Using this
for extensive redesign of the application to fit approach the programmer takes the STARS ap-
a new binding. plication and breaks it down into sections of code

that execute specific X tasks. These sections of
"* Fast turn-around times. Because it is a code are then converted to the new set of bind-

translation process, and because no design is ings.
required, the conversion can proceed rapidly.

4.2.1 Method
4.1.4 Disadvantages 1. Identify Sections of X Functionality. Starting

While tempting to use, this method fails on larger from the X application startup procedures,
applications. As Moore [4] discovered, line-by- identify areas where specific tasks are being
';,-• +r'-nslation quickly becomes unmanageable accomplished. For instance, an application

, rs. functions are introduced that interact may have a task that creates a form. This
with each other. In general, the disadvantages may have subtasks that create pushbutton
are categorized as follows: and label widgets.

Page 6

2. Develop an Equivalent Set of X Calls. For args,

each section identified, develop an equiva- num args)

lent set of X calls. Care shbuld be taken that Xmstr.- ingFree (st ring.

the set of calls be extracted from a version of

X that the new bindings are compatible with. Note that X provides

The important idea here is to create the same a function (XtVaCreateManaaedi',.cdqce:) that

functionality for the application using the eliminates the need for an argument list,

best available X functions, procedures, and Ada, however, cannot use this function since

types. This may require redesigning some it has a variable argument parameter list.
areas of the code. The Ada/Motif binding maps this function to

XtCreateManaaedWdgiet instead.
3. Map Equivalent Set to Target Bindings. The

next task is to map the X calls to Ada bind- 3. Map Equivalent Set to Target Bindings. Each
ings. Commercially supported bindings such function is mapped to an equivalent set of

as Ada/Motif generally have supporting doc- Ada/Motif bindings. Note that because Ada
umentation that assists with this task. can constrain an array, the num._args param-

4. Convert Global Variables. Care must taken eter on XtCreatemanaged~idget is not used.

that X global values which are used by dif- 4. Convert Global Variables. As the mapping

ferent sections of code get converted. This takes place, the variables Args and Fcrrr._

will tend to happen naturally: as sections of widget will have to be converted. Rather

code are converted, the global variables will than try a low-level mapping conversion,

become apparent. it is better to determine what Xt.Create_

These steps should be used as guidelines, and Managed-Widget expects them to be. Change

not be interpreted as strict procedure. Conversion them to the appropriate type, in this case X,,

from thin to thick bindings, for instance, may al- ArgList and Widget respectively.

low a relaxation on the equivalent set of X calls The results of the conversion are shown in Fig-
since there may not be a direct mapping. ure 7.

4.2.2 Example Conversion 4.2.3 Advantages

In this example, another section of Saber will be
converted. This piece of code, shown in Figure 6, Tis mtd wrs well on ons of-any

creates a label on the system's startup form. size, and has several advantages over low-levelmapping:

1. Identify Sections ofXFunctionality. The code
in Figure 6 is a good example of an X task. It 9 Robust. Since the strategy develops a set of

creates a label with a string in it. There is no X calls and maps these to the new bindings,

need for additional breakdown of the code. it doesn't fail when a non-mappable STARS
function or identifier is found. In Figure 6,

2. Develop Equivalent Set of X Calls. An equiv- Xt.SetWidget will not appear in the equiv-

alent set of X calls to perform this function alent set or the final code.

are:
o Enhanced performance. Some new func-

XmStringCreateLtoR(text, charset) tions in the X Window System (such as

Yt-SetArg(arg, resourcename, value) CreateManagedWidget) take the place ofsev-

:.reateManagedWidget (name, eral older calls. Using these in Ada elimi-

widgetclass, nates extra bindings and makes the code ex-

parent, ecute more efficiently.

Page 7

-Create the TITLE

Label-Text XM.Xm_String_Create_L_To_R(
"Welcome to the SABER Post-Processinq System',

XM.Xm STRING DEFAULTCHARSET)

XT.XtMakeArgList (SIZE => 3, ARGS => Args ~
XT.Xt Set Arg(Args, XM.XmN Width, 4000);

XT.Xt_Set_Arg(Args, XM.XmNUnitType, XM.Xm_10OOTH INCHES)

XT.XtSetArg(Args, XM.XmNLabelString, LabelText.);
TitleLabel := XM.Xrn Create Label(FormWidget, IT~tle", Aras)

XT.XtSetWidget(ChildList, Title-Label)

XT.XtClearArg_List(Args);

XM.XmString_Free(LabelText)

Figure 6: Section of Saber's STARS code

-- Create the TITLE

LabelText Xm_String_Create_L_To_R(

"Welcome to the SABER Post-Processing System",

Xm -_StringDefault_-Charset)

XtSetArg(Args (1), XmNWidth, 4000);

XtSet Arg(Args(2), Xm N unitType, XmlOOOthInches }

XtSetArg(Args(3), XmNLabelString, LabelText)

TitleLabel :=Xt-CreateManagedWidget("Titlew,
XxnLabel_WidgetClass,
Form-Widget,

Args(l . 3));

Xtm String Free(Label-Text)

Figure 7: High-level conversion

Page 8

* Avoids type incompatibilities. One of the certain X tasks are repeated often, and conversion
problems in low-level mapping that high- techniques can duplicated for each. For example,
level mapping avoids is'mismatching ar- Figure 6, which creates a label, is representative
gurment types. Where it was possible of about 50% of all the Saber code. Comparison
to think Xt .Xt._AncillaryTypes .Arq_:2s:. to other examples 12, 5, 6, 7) verifies that this is
Ptr should be used where XT.ArqLZst characteristic of most X programs
had appeared using low-level mapping, it As it tends to produce a better product, our
would be immediately obvious that xt .x:. recommendation is to use the high-level mapping
AncillaryTypes.XtArg-.List is used as a strategy for all but very simple systems
parameter type for all Ada/Motif set argu-
ment list functions. Acknowledgements

4.2.4 Disadvantages The research for this paper was supported by a

High-level mapping is inherently more complex grant from the Air Force Wargaming Center, AU

than low-level mapping. While it handles many CADRE/WO, Maxwell AFB, AL, 36112.

cases that low-level can't, there are tradeoffs:

References
"* Requires expertise in X. The process for doing

this type of conversion is not strictly defined. [1l Freese, Tim. "Ada/X Interface- Binding ver-
Programmers will need experience with X to sus Implementation." Tri-Ada 1992, Confer-
identify functional areas and the best set of ence Proceedings. 478. 1992.
equivalent calls to use. [2) Heller, Dan. Motif Programming Manual.

"* Slower turn-around times. Using the newer O'Reilly & Associates, inc., 1991.
features may require design changes in many [3] Kabunde, Gary Wayne. An Animated Graph
areas of the application. Changing the de-
sign, creating equivalent calls, and mapping ical Postprocessor for the Saber Wargame. MS

them to bindings will require significantly thesis, Air Force Institute of Technology, 1991.

more time than line-by-line translation. [41 Moore, Donald Ray. An Enhanced User Inter.

face for the Saber Wargame. MS thesis, Air

5 Conclusion Force Institute of Technology, 1992.

[5] Nye, Adrian. Xlib Programming Manual.
This paper discussed two strategies for converting O'Reilly & Associates, Inc., 1990.
from the STARS binding set to newer commercial
bindings. Low-level mapping is appropriate for [61 Nye, Adrian and Tim O'Reilly. X Toolkit In-
small applications with limited X functionality, trinsics Programming Manual. O'Reilly & As-
but does not work well with large applications. sociates, Inc., 1990.
High-level mapping works well with all applica-
tions and produces cleaner code, but requires ex- [7] Sy tem s eringMResarc Crotn
pertise with X programming. Ada! Motif User's Manual, 1992.

The high-level mapping strategy was developed [81 Young, Douglas A. X Window Systems Pro-
after determining that Saber could not be effec- gramming and Applications with Xt. Prentice
tively converted using low-level mapping. This Hall, Inc., 1989.
-•'t.hod has proved to be effective, allowing us

•- .,ert the initialization, main controller, and
game play utilities (about 2000 lines of Ada code)
in one week's worth of work. It was found that

Page 9

r FOrm Approved

REPORT DOCUMENTATION PAGE [orm Appr ove

PUNK MPOIobrl OJI6fl for this CoQftlO4n of .tommLo,' -% est~maw o #.0 d rf4 e' ~,oue at, viior"i. I^C~4,flq Ite' urni to, V-.- in,1.171~0ril, # W r.t' Ga*~
gath"rIng and masitjt&4tnsfl tP' data ngodeG. and Comoletin an* reviewing the <oltclin of 'rtorertion Ser,4 conmments = 4198Gg t. 4 k"t est 'to' a f . Ot!~' ~el 61.9, 0 MW
Collection ot ntorfnatOA,. .d a.nq uggestiori for ed., this 0v(Cj, to *,nAts Q~to 4O8t %C-(Crb.C' o0 .,.ctrnUt0 #,~ me-*OD DC.0'('11 *1

0
r 't, ýelo

0O0vt Nghway. S.'te 1204 AfltnqigOn. VA 22202-4302. anc tfi Otfice of ManagemnCft an ud~ F ~ *De'! 0~ fi aew, educlo Po :j (0n70A- O186) V*.tn.;Aqto, jW'

1. AGENCY USE ONLY (Leave blank) 2~. REPORT DATE lg1 3- REPORT TYPE AND DATES COVERED
V1 18 March 193 Technical Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Ada/X Window System Bindings: Conversion Strategies

6. AUTHOR(S)
Karl S. Mathias, Capt. USAF

Mark A. Roth, Maj. USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES 8 PE(RFORMING ORGANIZATION

Air Force Institute of Technology. WPAF Oil 45433-77Report
AFlT,1E.N-Tl1-93-2

9. SPONSORING TMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING, MONITORING

Air Force Wargamiiw g Center AGENCY REPORT NUMBER

AU CADRE/WG
Maxwell AFB AL. 36112-5532

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / RAVAILABILITY STAT!NMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
The X Window System has cnme to be accepted as the standard for developing graphical user interfaces on
mid to high range workstations. Ada interfaces to X through the use of bindings were developed in the late
1980's under the Software Technology for Adaptable Reliable Systems (STARS) contracts. The bindings have
not been maintained, and as they become more obsolete, many are converting their applications to newer sets o
commercially available bindings. This paper discusses how the bindings work and two strategies for converting
out of the STARS bindings.

' ,UBJECT TERMS 15. NUMBER OF PAGES

Ada, X Windows, Motif, Ada Bindings 11
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT Of THIS PAGE Of ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 star~dard ;Orrn 198 (Rev 2-89)

